

GlobalAM

Enabling Laser Powder Bed Fusion for Large Scale Production of Multi-Material Components

Metal laser powder bed fusion (LPBF-M) of metals is an established manufacturing technique with great potential in terms of flexibility, digitalization, geometric freedom.

But: Productivity of LPBF-M is still too low to penetrate mass markets.

Classical AM

Printing massive components

- → Focus: metal on metal substrate
- \rightarrow Cy Hybrid AM
- \rightarrow Cos
- \rightarrow No

Hybrid printing of massive component

- \rightarrow Focus: metal on metal inlay
- → Cy Feature Based Hybrid AM
- \rightarrow Cos
- \rightarrow Fit t

/cm

GlobalAM approach: Focus additive manufacturing on (small) functional elements

Printing tiny features

- \rightarrow Cycle time: \sim s Ψ
- \rightarrow Powder demand Ψ
- \rightarrow Cost-benefit ratio \uparrow

LPBF-M fits mass manufacturing e.g for electronic components.

GlobalAM aims to unlock the potential of additive manufacturing for large scale production by feature based hybrid production on dissimilar substrate materials.

Key Exploitable Results:

competitive high performance cooling device as industrialization demonstrator

advanced machine concept for highly reduced cycle times + precision positioning of substrates

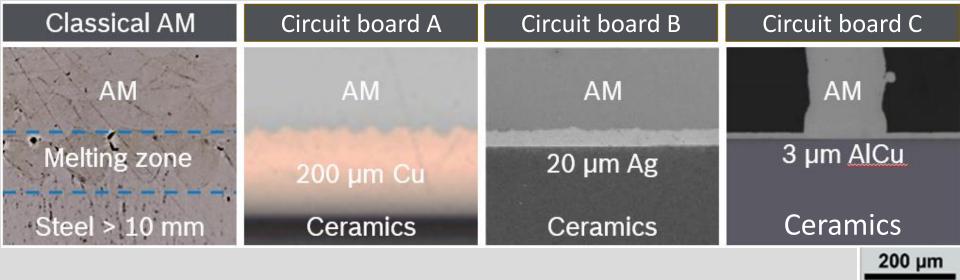
superior material systems for defect-free products with improved functional performance

Project Key Facts:

Project partners

36 months **Project duration**

Jan. 1st 2024 Starting date



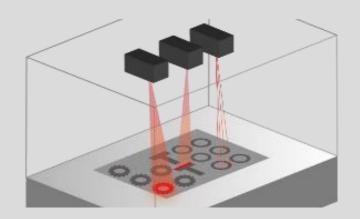
4.0 Mio. € **Budget**

GløbalAM Process Challenges

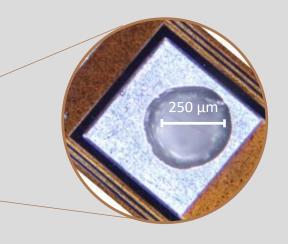
Mastering Multi-Material AM on Fragile Substrates

Challenges

- (1) Multi-material systems: substrate + metalization + AM part
- (2) Strictly limited melting zone: < metalization thickness
- (3) Substrates vulnerable to cracks \rightarrow low residual stress process


Solutions

Simulation-supported process development Adapted process strategies

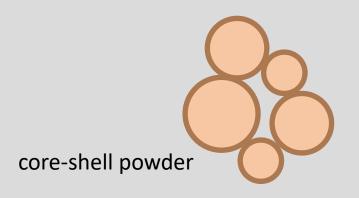


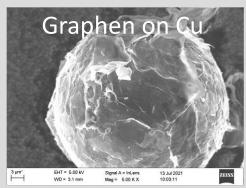
GløbalAM Machinery Challenges

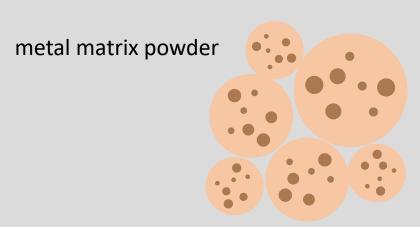
Mastering **Productivity, Precision & Automation**

Challenges

- (1) High productivity & cost efficiency
- \rightarrow Short AM cycle times (< 5 min / batch \triangleq s / part),...
- (2) Highly precise adjustment of laser(s) vs. substrate
- \rightarrow Positional accuracy < 50 µm
- (3) Full line integration automated loading and depowdering


Solutions


- Laser beam shaping & splitting
- In-line process monitoring and defect compensation
- Substrate fixation & positioning system



GløbalAM Materials Challenges

Mastering Functional Properties, Aging, Scalability

Challenges

- (1) Reliably joining of dissimilar materials
- \rightarrow life time requirements for automotive applications
- (2) Best functional properties
- → high flowability/absorption/conductivity, low aging, ...
- (3) Recycling of powder
- → mass production scale powder recycling for economic and environmental compatibility

Solutions

- core shell powders
- metal matrix composites
- non-standard materials

GløbalAM Key Enabling Technologies

Key Enabling Technologies employed + **responsible partners** to achieve project goals:

Process & Defect Monitoring

BOSCH

Substrate Positioning

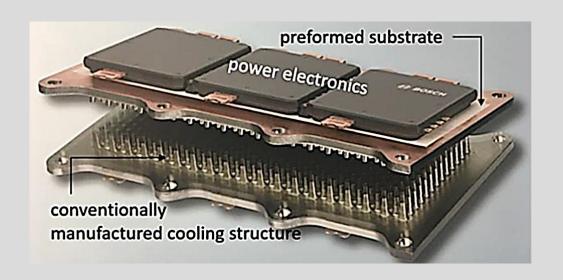
In-line Defect Compensation

BOSCH

Substrate Fixation

Multi-material Powders

Multi-scale Modelling



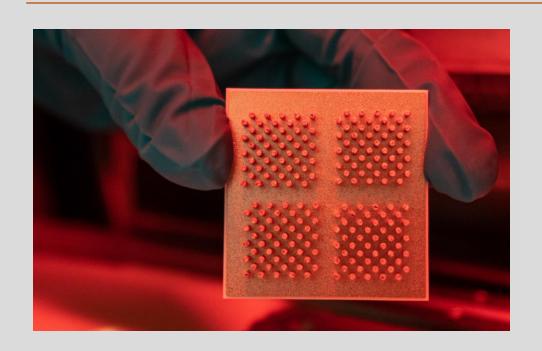
GløbalAM Inverter Cooler State of the Art

substrate

cooler chip Cu ceramic long path baseplate

electronics

Conventional cooler design

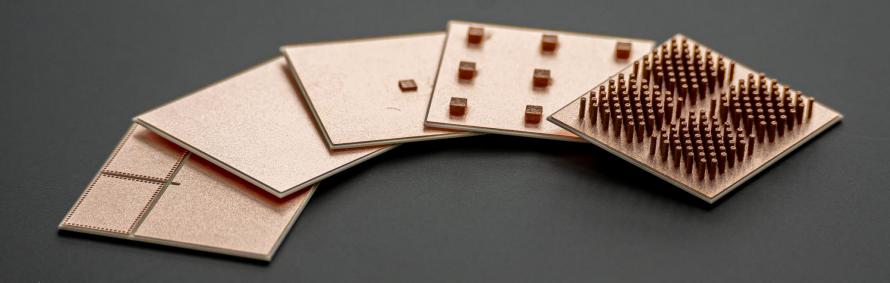

- relatively long cooling path
- soldering/sintering required
- high material usage
- limited design flexibility

- limited cooling performance
- large chip size
- additional assembly effort

GløbalAM Cooler

electronics substrate cooler chip Cu short path ceramic

GlobalAM cooler concept


- + minimum cooling path
- + integrated joining process
- + minimum material usage
- + complexity for free

- + high cooling performance
- + reduced chip size
- assembly effort minimized

GlobalAM

your ace in Laser Powder Bed Fusion.

Interested in partnering up? Ideas for your applications? Keen to bring in new materials? You are welcome to contact us!

Project Homepage:

https://www.globalam-project.eu/

Contact:

Robert Bosch GmbH, Dr. Frank Sarfert

Tel.: +49 711 811-10785

Mail: frank.sarfert@bosch.com